本文共 664 字,大约阅读时间需要 2 分钟。
GM(1,1)是使用原始的离散非负数据列,通过一次累加生成削弱随机性的较有规律的新的离散数据列,然后通过建立微分方程模型,得到在离散点处的解经过累减生成的原始数据的近似估计值,从而预测原始数据的后续发展。
(我们在此课件中只探究GM(1,1)模型,第一个‘1’表示微分方程是一阶的,后面的‘1’表示只有一个变量)原则:
(1)数据是以年份度量的非负数据(如果是月份或者季度数据一定要用我们上一讲学过的时间序列模型);
(2)数据能经过准指数规律的检验(除了前两期外,后面至少90%的期数的光滑比要低于0.5); (3)数据的期数较短且和其他数据之间的关联性不强(小于等于10,也不能太短了,比如只有3期数据),要是数据期数较长,一般用传统的时间序列模型比较合适。转载地址:http://axfg.baihongyu.com/